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Dependence of isochronous bifurcations on the driving-mode phase shift
in two-harmonic standard maps
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Some dynamical properties of nonlinear coupled systems can be described by the two-harmonic standard map,
a two-dimensional area-preserving system with two parameters, where two distinct arbitrary resonant modes
compete. Usually, the initial phase of the resonant modes is considered to be null. In this paper, we consider
a non-null phase shift between the two competing isochronous modes that form the system. We observe that a
nonzero phase shift alters the phase space, changing the stability and positions of the fixed points. Furthermore,
the phase shift can change the dominant mode and create intermediate modes between the main ones. Lastly, we
analyze the effect of the phase shift on the onset of secondary shearless curves in the phase space. Thus, different
phase shifts result in various scenarios in which secondary shearless curves emerge in the phase space.
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I. INTRODUCTION

Nonlinear coupling has been investigated in several phys-
ical systems [1], including wave coupling in plasma physics
[2–4], coupled lasers [5,6], and others. The properties of
coupled systems depend on the coupling and the energy ex-
changes among the subsystems [3,4,7–9].

A suitable description of coupling properties of noninte-
grable Hamiltonian systems can be made by the Chirikov-
Taylor map [10,11], also called standard map, which is an
area-preserving map that can be obtained, for example, from
studies of kicked oscillators and particles in a magnetic trap
[12]. In fact, the standard map describes a typical oscillating
system near a nonlinear resonance [13].

A generalized version of the standard map can be derived
from a Hamiltonian perturbed by a sequence of kicks applied
to a superposition of waves [14,15]. From this Hamiltonian,
we can obtain a generalized standard map with a sum of
resonant modes. The collection of all modes forms a potential
that can be interpreted as a multiple-well potential [14,15].

*Contact author: mmugnaine@gmail.com

A Hamiltonian with perturbing kicks can be obtained if we
consider a charged particle in a broadband spectrum, i.e., a
particle of unit mass in an infinite set of electrostatic waves
having the same amplitudes, same wave numbers, integer
frequencies, and zero initial phases [16,17]. In Ref. [16],
Bénisti and Escande studied nonstandard diffusion properties
of the system obtained by such Hamiltonian. Furthermore,
they consider a finite number of waves and random distinct
initial phases for each wave.

Considering only one wave, Carlo and coauthors proposed,
in Ref. [18], a Hamiltonian for cold atoms, or a Bose con-
densate, subjected to a far-detuned standing wave, named
atom-optical kicked rotor problem. Also for only one wave,
it is possible to apply the Hamiltonian with kicks to study
the dynamics transverse to the magnetic field of a relativistic
particle moving in a uniform magnetic field and perturbed by
a standing electrostatic wave, as shown in Ref. [19].

Recently, we analyzed a map, which can be obtained using
only two terms of the summation and different amplitudes
for each term, named two-harmonic standard map [20]. Such
a map was proposed with the purpose of presenting a sim-
ple system, which simulates the competition between two
isochronous resonant modes and exhibits isochronous bifurca-
tions. An isochronous bifurcation is defined as the emergence
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of distinct chains of periodic islands with the same frequency
in the same region of phase space. These islands are also
named isochronous and they emerge in twist systems as a
response to the competition between two arbitrary resonant
modes.

Violating the twist condition (named a nondegeneracy con-
dition for Hamiltonian continuum systems), leads to different
phenomena emerging in the phase space. The shearless curve,
for which the derivative of the rotation number with respect to
the action vanishes, is an example of nontwist phenomena that
occur because of the nonmonotonicity of the rotation number
[21,22]. Furthermore, shearless curves are robust in the sense
that they can survive the destruction of neighbor invariant
curves on both sides with respect to the action variable [23].
Moreover, Dullin et al. [24] demonstrated the existence of
shearless (twistless) curves in the twist conservative Hénon
map. In this case, they related the shearless curve to an ex-
treme value for the internal rotation number, and since the
shearless curve is inside an island, it is called a secondary
shearless curve. Abud and Caldas also identified these sec-
ondary shearless curves in the standard twist map [25]. Most
recently, other examples of secondary shearless curves have
been found [26]

In our studies developed in Refs. [20] and [26] we con-
sidered that, as for the standard map, the phase is null for
all waves and resonant terms. The same assumption was
made for the analysis of the extended standard map, ana-
lyzed in Refs. [14,27,28]. However, it is possible to consider
different phases for the system. Frahm and Shepelyansky
considered random phase shift angles in the standard map
and they observed a random behavior for small time scales
[29]. Phase shifted kicks were also considered in the standard
map by Cavallasca, Artuso, and Casati and the consequence
is symmetry breaking and the emergence of ratchet cur-
rent in the transport of chaotic orbits [30]. Distinct phases
can also be considered in the wave-particle problem, result-
ing in various types of transport similar to the effect of a
noise [16,17,31–33].

Coupled systems with two modes typically exhibit prop-
erties not present in the single-mode models. The dynamical
behavior of these systems depends not only on the mode
amplitudes but also on the phase shift between the two modes.
The resulting dynamics vary with the phase shift, exhibiting
regions of strong and weak coupling within the system’s pa-
rameter space. Depending on the phase shift, the two modes
may behave as a single, unified system, making it difficult
to distinguish the individual modes. In some regions of the
parameter space, the coupling is weak: one mode slightly
interferes with the other, and the dominant mode is easily
identifiable. Thus, for some mode phase shifts, one mode
dominates the dynamics, while for others, the coupling dom-
inates, making it difficult to distinguish the individual modes.
Furthermore, the phase shift introduced in this paper enabled
us to observe new types of bifurcations not present without
a phase shift. We point out that the methods we developed
are not restricted to the analyzed map. The obtained results
may apply to other nonlinear coupled systems for which it is
possible to identify the phase shift.

In this work, we consider distinct phases for the two-
harmonic standard map and analyze the effect of a phase shift

in the system. We investigate the impact of phase shifts equal
to ϕ = π and ϕ = π/2 in the phase space, in isochronous
bifurcations and in the emergence of secondary shearless
curves. From our results, we show that the phase shift has
an important role in the positions of elliptic points, which
changes the position of periodic islands in phase space. We
also verify that the phase shift modifies the isochronous bifur-
cations, altering the type of bifurcation and the intermediate
modes between the dominant ones. As a last consequence, we
identify the onset of internal shearless curves due to different
phase shifts.

This paper is organized as follows. The studied model is
presented in Sec. II and the impact of the phase shift in the
modes of the system is discussed in Sec. III. The transition by
isochronous bifurcations is studied in Sec. IV. Our analysis
about secondary shearless curve is presented in Sec. V. Our
conclusions are provided in the last section. Supplemental
Material is available [34].

II. MODEL

A generalized version of the standard map can be described
by the time-dependent Hamiltonian, based on Ref. [15],

H = y2

2
− K

⎡
⎣

W∑
j=1

1

4π2 j
cos(2π jx)

⎤
⎦

∞∑
n=−∞

δ(t − nτ ), (1)

where parameter K controls the integrability of the system;
K �= 0 indicates a nonintegrable system. The parameter W is
an integer, and the periodic kicks are modeled by the periodic
Dirac δ distribution. We set τ = 1 with no loss of generality.
The Hamiltonian associated with the standard map is recov-
ered when W = 1. From the Hamiltonian (1), we obtain the
following generalized standard map:

xn+1 = xn + yn+1

yn+1 = yn −
∑

j

K

2π j
sin(2π jxn), (2)

where x and y can be taken modulo 1. Each term in the
summation can be taken as a resonant perturbation mode,
and the collection of all modes forms a potential that can be
interpreted as a multiple-well potential [15].

The two-harmonic standard map [20], considered in this
work, is an extension of (2) where one considers two fre-
quencies m1 and m2 and independent amplitudes K1 and K2.
Furthermore, adding a phase shift ϕ on the argument of the
second harmonic of the two-harmonic standard map [20], we
obtain the equations

xn+1 = xn + yn+1,

yn+1 = yn − K1

2πm1
sin(2πm1xn) − K2

2πm2
sin(2πm2xn + ϕ),

(3)

where K1, K2 ∈ R and m1, m2 ∈ N. The numbers m1 and m2

identify the modes of the system, i.e., the number of elliptic
points at y = 0, and, depending on the amplitudes K1 and K2,
the system can exhibit m1 to m2 islands. In this paper, we
always consider m2 > m1 and values of K1 and K2 in the range
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FIG. 1. The impact of the phase ϕ for the two-harmonic standard map for m1 = 1 and m2 = 4, with K2 = 0.04 (first row) and K2 = 0.25
(second row). The phase for each column is different: ϕ = 0.0 for the first column, ϕ = π for the second column and ϕ = π/2 for the third
one. Each color indicates a different island surrounding a distinct period-1 elliptic orbit. For all phase spaces, K1 = 0.05.

[0,4]. We consider (3) on the unit torus, i.e., we take mod 1
for both variables in (3).

With ϕ = 0, we recover the two-harmonic standard map,
analyzed in Ref. [20]. In this work, our objective is to analyze
the role of a nonzero phase shift ϕ in the system and its impact
on the number of islands and on isochronous bifurcations, i.e.,
routes from mode m1 to mode m2. For this analysis, we com-
pute the phase portraits for different values of ϕ. Specifically,
we chose ϕ = 0 (the original two-harmonic standard map),
ϕ = π , and ϕ = π/2 (representing maps with a phase shift).
For the modes, we select m1 = 1 and m2 = 4. The phase
portraits for the three values of ϕ and the two modes are shown
in Fig. 1.

In Figs. 1(a1) and 1(b1), we present the phase spaces for
ϕ = 0 with different amplitudes of K2. When K1 = 0.05 and
K2 = 0.04, i.e., Fig. 1(a1), there is only one island around
the elliptic point at (0, 0), indicating the predominance of
the mode m1 = 1. When K2 increases to K2 = 0.25 and K1 =
0.05, the configuration shown in Fig. 1(b1) emerges, where
four islands of period 1 are observed around four distinct
elliptic points, representing the mode m2 = 4.

Similar scenarios occur for the phases ϕ = π (second
column) and ϕ = π/2 (third column): the mode m1 = 1 is
predominant in the panels labeled (a), while the mode m2 = 4
is predominant in the panels labeled (b). However, examining
the phase spaces reveals that the phase ϕ affects the elliptic
points by altering their positions and/or stability. For example,
at ϕ = 0, there are two elliptic points at positions x = 0 and
x = 0.5. At ϕ = π , these fixed points are hyperbolic, while
at ϕ = π/2, there are no elliptic points at these positions.
For ϕ = π , the second harmonic is still a sine function, but
negative; thus, x = 0 and x = 0.5 are still fixed points for
any value of K1, K2, m1, and m2. For ϕ = π/2, the second
harmonic is a cosine, so the fixed point position depends on

all parameters of the system. These analytical results can be
found in the Appendix.

III. PHASE SHIFTING AND MODES OF THE SYSTEM

As observed in Ref. [20], intermediate modes may appear
on the route from mode m1 to mode m2. Thus, the number
of elliptic points on the line y = 0 depends on all parameters
of the system. We compute the number of elliptic points for
different values of K1 and K2 and for all combinations of m1

and m2 with m1 = 1, 2, . . . , 5 and m2 ∈ [m1 + 1, 6]. Here, we
present three different combinations of (m1, m2) that represent
the general results: (1,4), (1,5), and (4,5). All parameter spaces
can be found in the Supplemental Material [34].

By searching for fixed points of period 1 on the line y = 0,
we compute the number of distinct elliptic points. We present
the parameter spaces K1 × K2, where the color indicates the
number of distinct elliptic points. Additionally, the number
of elliptic points is labeled by numbers in the corresponding
colored regions.

First, we present the parameter spaces for m1 = 1 and
m2 = 4 and the three chosen values of ϕ. As shown in a
previous work [20], there is an intermediate mode m = 2 on
the way from one to four elliptic points. This result can be
checked in Fig. 2(a), where ϕ = 0. In this configuration, the
bifurcation from mode 1 to mode 2 occurs when K2 = K1,
with K1 ∈ [0, 2]. When K2 = 3.65K1, the mode 4 emerges in
the system for 0 < K1 � 0.85.

For ϕ = π and ϕ = π/2, the parameter spaces are shown
in Figs. 2(b) and 2(c), respectively. We observe that, for both
cases, there is also an intermediate mode between mode 1 and
mode 4. However, while the intermediate mode is 2 for ϕ =
π , it is m = 3 for ϕ = π/2. The bifurcation lines K2 = K1

(red line) and K2 = 3.65K1 (white line) are the same for ϕ = 0
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FIG. 2. Parameter spaces for the number of elliptic points for m1 = 1, m2 = 4. The numbers indicate the number of elliptic points for the
corresponding colored region. The value of ϕ for each case is (a) ϕ = 0, (b) ϕ = π , and (c) ϕ = π/2.

and ϕ = π , but the interval of K1 where the bifurcation occurs
differs for each ϕ. For ϕ = π/2, we find K2 = 2.7K1 (yellow
line), between the regions of modes 1 and 3, and K2 = 4K1

(green line) for the 3 → 4 transition. The first general result is
that the different phases ϕ influence the intermediate modes,
either by changing the mode itself or altering the interval in
which the transition occurs. This result is also found with the
pair (m1 = 1, m2 = 6).

Next, we choose the modes m1 = 1 and m2 = 5 to repre-
sent the second general result: the emergence of intermediate
modes. In Fig. 3 we have the respective parameter spaces for
(a) ϕ = 0, (b) ϕ = π , and (c) ϕ = π/2.

In Fig. 3(a), we observe the parameter space for ϕ = 0 with
no intermediate mode for 1 → 5 transition. The transition
occurs when K2 = 4K1 (white line) for K1 ∈ (0, 0.8]. When
ϕ = π , we have the parameter space shown in Fig. 3(b). In
this space, we observe an intermediate mode, the mode 3.
The same intermediate mode is observed in Fig. 3(c), where
ϕ = π/2. The 1 → 3 transition occurs when K2 = K1 (red
line), for ϕ = π and any value of K1 ∈ (0, 4]. For ϕ = π/2,
the transition occurs when K2 = 2.8K1 (yellow line) and K1 ∈
(0, 1.43]. The second transition, 3 → 5, occurs on the line
K2 = 5K1 (cyan line) when K1 ∈ (0, 0.8] for ϕ = π , and on
the line K2 = 4.8K1 (green line) when K1 ∈ (0, 0.83] and ϕ =
π/2. Our results suggest that adding a phase shift between the
two harmonics leads to the emergence of intermediate modes
in the system

In contrast to the previous result, there are scenarios where
the addition of a nonzero phase does not result in new inter-
mediate modes. However, the phase does influence when the

transition occurs, i.e., the bifurcation lines. This occurs for the
pairs (m1, m2) = (1,2), (1,3), (2,4), (2,6), (3,4), (3,5), (3,6),
and (5,6). The respective parameter spaces and bifurcation
lines can be checked in Ref. [34].

The final general result concerns the invariance of the
bifurcation curves. For certain combinations of m1 and m2,
the bifurcation curves remain unchanged for ϕ = 0, π and
π/2, but the colored regions differ. This occurs for (m1, m2) =
(2, 3), (2, 5), and (4, 6). The corresponding parameter spaces
can be found in the Supplemental Material [34]. Here, we
highlight a particular case where both the bifurcation curves
and the colored regions remain identical for all three values of
ϕ. In summary, the parameter space is invariant for the three
values of ϕ and it is presented in Fig. 4.

For all analyzed values of ϕ, the parameter space is the one
presented in Fig. 4 for m1 = 4 and m2 = 5. The 4 → 5 transi-
tion occurs at the bifurcation curve K2 = K1 (white line). This
invariance is due to the bifurcation of different fixed points in
the system. For ϕ = 0, the fixed point (x∗, y∗) = (0.5, 0) goes
through a bifurcation when K2 = K1; for ϕ = π , the fixed
point (0, 0) changes its stability for the same bifurcation line;
and for ϕ = π/2, the point (0.25, 0) bifurcates when K2 = K1.
The mathematical computations are based on the analysis in
Appendix.

IV. TRANSITIONS BY ISOCHRONOUS BIFURCATIONS

In this section, we study the isochronous bifurcations them-
selves and how they are affected by the addition of nonzero
phase ϕ. For this, we compute the bifurcation diagrams of

FIG. 3. Emergence of intermediate modes for ϕ �= 0. The parameter spaces indicate the number of elliptic points for m1 = 1, m2 = 5. The
phases are (a) ϕ = 0, (b) ϕ = π , and (c) ϕ = π/2.
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FIG. 4. Invariance of the parameter space for m1 = 4 and m2 =
5. The bifurcation curves and the colored region remain identical for
ϕ = 0, π , and π/2.

the fixed points in relation to the parameter K2. For all the
bifurcation diagrams presented, we chose K1 = 0.05 and the
black (gray) lines indicate the elliptic (hyperbolic) points in
panels (a) for the next figures.

In Fig. 5 we observe the route from m1 = 1 to m2 = 4
islands for the three chosen values of ϕ. For the two first rows,
the route involves first a pitchfork bifurcation from 1–2 islands
and then two saddle-node bifurcations occur simultaneously.
The third row, for ϕ = π/2, displays a different scenario:
as seen in the previous section, the intermediate mode is 3
and both transitions 1 → 3 and 3 → 4 occur by saddle-node
bifurcations. In Fig. 5, the final modes are the same, but the
final four islands sequence in phase space depends on the
phase shift.

Next, we consider the case where m1 = 1 and m2 = 5,
where the inclusion of a nonzero phase is responsible for the
emergence of an intermediate mode. The results are shown in
Fig. 6. In the first row, we have ϕ = 0 and the 1 → 5 tran-
sition occurs by four saddle-node bifurcations, which occur
at the same value of K2. For ϕ = π we have the sequence
shown in the second row, where two pitchfork bifurcations

in K2 = K1 are responsible for the 1 → 3 transition. On in-
creasing the value of K2, two saddle-node bifurcations occur
and we observe the mode m2 = 5. The third row represents the
case where ϕ = π/2: in this case, we only have saddle-node
bifurcations for both 1 → 3 and 3 → 5 transitions. In Fig. 6,
the final configurations are also different for the considered
three phase shift values.

A similar scenario occurs for the 2 → 6 transition: only
saddle-node bifurcations for ϕ = 0 and π/2, and pitchfork bi-
furcations for ϕ = π . The bifurcation diagrams for this route
are available in the Supplemental Material [34].

Lastly, we analyze the case m1 = 4 and m2 = 5 where the
bifurcation lines along with the parameter spaces are equal for
all values of ϕ. In Fig. 7, we observe the bifurcation diagrams
in Fig. 7(a) and the corresponding phase spaces in Figs. 7(b)
and 7(c).

The bifurcation diagrams show that bifurcations occur for
the same values of K2 but in different fixed points. For ϕ =
0 (the first row), the 4 → 5 transition occurs by a pitchfork
bifurcation in the fixed point x∗ = 0.5. For the second row,
we have ϕ = π and also a pitchfork bifurcation, but this time,
in the fixed point x∗ = 0. Lastly, a pitchfork bifurcation occurs
in the fixed point x∗ = 0.25 for ϕ = π/2, the sequence shown
in the third row. With these results, we have a scenario where
the addition of a nonzero phase changes the fixed point, which
goes through a bifurcation, but the bifurcations are the same
(pitchfork bifurcations) and they occur at the same value K2.

Finally, we analyze all the routes from mode m1 to mode
m2 for the three values chosen from ϕ. The routes are shown
in Table I. The letters P and SN indicate the occurrence of
pitchfork and saddle-node bifurcations, respectively.

From the results shown in Table I, we observe that the
phase ϕ can alter the bifurcation that occurs in each route.
This is observed in transitions 1 → 3, 1 → 4, 1 → 5, 1 → 6,
2 → 4, 2 → 6, 3 → 4, 3 → 5, 3 → 6, and 5 → 6. We can
observe a predominance of pitchfork bifurcations for ϕ = π

and of saddle-node bifurcations for ϕ = π/2. For ϕ = π , we
always have a pitchfork bifurcation in the fixed point x = 0.0
when K2 = K1 and, consequently, is impossible to have routes

FIG. 5. Isochronous bifurcations for m1 = 1 and m2 = 4 with K1 = 0.05. We present the bifurcation diagrams (a) for the fixed points and
the phase spaces (b)–(d) for the parameters K2 indicated by the color lines for ϕ = 0.0 (first row), ϕ = π (second row), and ϕ = π/2 (third
row).
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FIG. 6. Route from m1 = 1 to m2 = 5 islands with K1 = 0.05. Bifurcation diagrams (a) for the fixed points and phase spaces (b)-(d) for
the parameter K2 indicated by the color lines for ϕ = 0.0 (first row), ϕ = π (second row), and ϕ = π/2 (third row).

with just saddle-node bifurcations as observed for ϕ = 0 and
ϕ = π/2.

V. SECONDARY SHEARLESS CURVES

As shown in Ref. [26], the emergence of secondary shear-
less curves is commonly observed in twist systems with
resonant mode coupling. For the two-harmonic standard map,
we observed three patterns for the emergence of shearless
curves. The first pattern was formed by the emergence of
a single shearless curve, before the occurrence of a pitch-
fork bifurcation. A second pattern involved the formation of
shearless curves in pairs where these curves appear as cor-
responding maximum and minimum pairs within the internal
rotation profile. Finally, the third pattern represented the emer-
gence of shearless curves in distinct islands.

The identification of secondary shearless curves is per-
formed by the analysis of the internal rotation (or winding)
number ωin, inside an island, defined [25] as

ωin = lim
n→∞

1

2πn

n∑
i=1

Piθ̂Pi+1. (4)

In this section, we analyze the impact of the phase shift ϕ

in the emergence of secondary shearless curves. Considering
all the combinations of m1 and m2 for m1 ∈ [1, 5] and m2 ∈
[m1 + 1, 6], we found three possible scenarios for the impact
of the phase shift on the secondary shearless curves.

The first scenario is represented by the pair (m1, m2) =
(1, 2). In this case, there is no secondary shearless curves
for ϕ = 0 but the inclusion of a phase ϕ �= 0 leads to the
emergence of shearless curves. In Fig. 8, the internal winding

FIG. 7. Isochronous bifurcations for m1 = 4, m2 = 5, and K1 = 0.05. Bifurcation diagrams (a) for the fixed points and phase spaces (b)
and (c) for the parameter K2 indicated by the color lines for ϕ = 0.0 (first row), ϕ = π (second row), and ϕ = π/2 (third row).
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TABLE I. Summary of the types of bifurcations for all pairs
of harmonics 1 � m1 < m2 � 6 and 0 � K1 � 4, 0 � K2 � 4. The
letters P and SN indicate pitchfork and saddle-node bifurcations,
respectively.

Transition ϕ = 0 ϕ = π ϕ = π
2

1 → 2 1
P−→ 2 1

P−→ 2 1
SN−→ 2

1 → 3 1
SN−→ 3 1

P−→ 3 1
P−→ 3

1 → 4 1
P−→ 2

SN−→ 4 1
P−→ 2

SN−→ 4 1
SN−→ 3

SN−→ 4

1 → 5 1
SN−→ 5 1

P−→ 3
SN−→ 5 1

SN−→ 3
SN−→ 5

1 → 6 1
P−→ 2

SN−→ 4
SN−→ 6 1

P−→ 2
SN−→ 4

SN−→ 6 1
SN−→ 3

SN−→ 5
SN−→ 6

2 → 3 2
P−→ 3 2

P−→ 3 2
P−→ 3

2 → 4 2
P−→ 4 2

P−→ 4 2
SN−→ 4

2 → 5 2
P−→ 3

SN−→ 5 2
P−→ 3

SN−→ 5 2
P−→ 3

SN−→ 5

2 → 6 2
SN−→ 6 2

P−→ 6 2
SN−→ 6

3 → 4 3
P−→ 4 3

P−→ 4 3
SN−→ 4

3 → 5 3
SN−→ 5 3

P−→ 5 3
SN−→ 5

3 → 6 3
P−→ 6 3

P−→ 6 3
SN−→ 6

4 → 5 4
P−→ 5 4

P−→ 5 4
P−→ 5

4 → 6 4
P−→ 6 4

P−→ 6 4
P−→ 6

5 → 6 5
P−→ 6 5

P−→ 6 5
SN−→ 6

number profile and the respective phase spaces are shown for
K1 = 0.1, K2 = 0.15, and the three different values of ϕ.

As stated before, there is no shearless curve for (m1, m2) =
(1, 2) and ϕ = 0, as shown in Fig. 8(a1), where the winding
number profile does not exhibit any extremum point. We
observe the predominance of m2 = 2 mode in the system
with the existence of two islands, one around x = 0 and the
other around x = 0.5. Different configurations emerge when

FIG. 8. Emergence of secondary shearless curves when ϕ �= 0,
for m1 = 1, m2 = 2, K1 = 0.1, and K2 = 0.15. In (a) we show the in-
ternal winding number profile with the extremum points highlighted
by the red dots. The respective phase portraits are shown in (b).
Indices 1, 2, and 3 represent ϕ = 0, π , and π/2, respectively.

FIG. 9. Emergence of pairs of shearless curves for the two-
harmonic standard map with and without phase shift. We chose m1 =
1, m2 = 4, K1 = 0.1, and K2 = 0.25. The internal winding number
profile [(a)] shows pairs of maxima and minima, where each one
represents a pair of shearless curves, displayed by the red curves in
the phase spaces [(b)]. Just as in Fig. 8, each row indicates a different
phase shift ϕ.

the phase shift is different. For ϕ = π , we show the winding
number profile and the phase space in Fig. 8(a2) and 8(b2),
respectively. In this case, we observe a maximum point in
the ωin profile, representing the only shearless curve found
in the phase space. This bifurcation corresponds to the first
pattern observed in Ref. [26], where the single shearless curve
emergence is related to the pitchfork bifurcation that occurs
for the elliptic point. As verified by the phase space, we have
the predominance of mode m2 = 2.

For ϕ = π/2, we observe the winding number profile and
the respective phase space in Fig. 8(a3) and 8(b3). For this
case, we observe the emergence of a pair of shearless curves,
represented by the pair of maximum-minimum local points
in the ωin profile. This case represents the second pattern
observed in Ref. [26]. Differently, for Fig. 8(b3) we have the
predominance of mode m1 = 1.

In summary, while no shearless curve is observed for ϕ =
0, we observe the emergence of a single curve when ϕ = π

and the emergence of a pair of curves when ϕ = π/2. This
difference occurs because of the different kind of bifurcation
that occurs in the interior of the islands. For ϕ = π , we ob-
serve a pitchfork bifurcation, while for ϕ = π/2, as stated in
Table I, there occurs a saddle-node bifurcation.

Now, we analyze the effect of a nonzero phase shift, which
leads to a pair of shearless curves for ϕ = 0. This scenario is
illustrated by the pair (m1, m2) = (1, 4) and the results on the
winding number profiles and the respective phase spaces are
shown in Fig. 9.

As observed in Fig. 9(a1), for ϕ = 0 there is a pair of
shearless curves, indicated by the red points in the ωin profile
and by the red curves in Fig. 9(b1). With a nonzero phase
shift ϕ = π , we have the results shown in Fig. 9(a2) and
9(b2). In this case, we have a maximum in the ωin profile,
around y ≈ 0.053, followed by a minimum-maximum pair for
greater values of y. The first maximum occurs for all winding
number profiles with ϕ = π . This occurs because the fixed
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FIG. 10. Emergence of maximum points in the internal winding
number profile. The parameters are m1 = 3, m2 = 5, K1 = 0.1, and
K2 = 0.2. Each row represents a phase shift: (i) ϕ = 0, (ii) ϕ = π ,
and (iii) ϕ = π/2.

point (0, 0) undergoes a pitchfork bifurcation for all values
of m1 and m2 and, as seen in Ref. [26] and in Fig. 8(a2), a
single maximum in related to the occurrence of a pitchfork
bifurcation. Lastly, for ϕ = π/2, we observe multiple pairs of
maximum-minimum points in the ωin profile in Fig. 9(a3). As
a consequence, we observe multiple shearless curves in the
phase space of Fig. 9(b3).

Just as in the previous case, while we have the predomi-
nance of mode m2 = 2 for ϕ = 0, π , Fig. 9(b1) and 9(b2), the
predominant mode for ϕ = π/2 is mode m1 = 1, as shown
in 9(b3). The second observed shearless bifurcation is related
to the emergence of pairs of shearless curves for all studied
phase shifts ϕ.

Lastly, we present the third observed scenario: the emer-
gence of a maximum or multiple maximums in the internal
winding number profile for all analyzed phase shift values.
This scenario is represented by the pair (m1, m2) = (3, 5) and
the respective results are shown in Fig. 10.

The last observed bifurcation includes the emergence of
just maximum points in the ωin profile, as shown in panels (a)
of Fig. 10. For ϕ = 0, we observe a single local maximum
in Fig. 10(a1) corresponding to the only secondary shearless
curve in Fig. 10(b1). A similar situation is observed in the sec-
ond line, for ϕ = π , where only one maximum is present. A
slightly different case is observed in the last line, for ϕ = π/2,
where we observe multiple maximums in Fig. 10(a3). Each
maximum represents a shearless curve, indicated by the red
curves in Fig. 10(b3). For all phase spaces shown in Fig. 10(b),
we have the predominance of mode m2 = 5 with five distinct
islands in the phase spaces.

VI. CONCLUSIONS

Nonlinear coupling is a phenomenon widely studied in
physical systems. The presence of a phase shift in such sys-
tems can lead to distinct bifurcation scenarios. In this research,
the inclusion of a nonzero phase shift in the two-harmonic
standard map was analyzed. We considered two synchronous
modes in the map and three values for the phase shift: null

phase shift, ϕ = π and ϕ = π/2. From the phase space anal-
ysis, we observe distinct bifurcations. For ϕ = π , we observe
the interchange of stability of the fixed points while, for ϕ =
π/2, there are no fixed points in the usual position x = 0 and
x = 0.5.

The role of the phase shift is crucial to the isochronous
bifurcations of the system. We observe that a nonzero phase
shift makes it possible to have different intermediate modes in
the bifurcations, including the emergence of new intermediate
modes in scenarios where there were no intermediate modes
for null phase shift. However, for such values of m1 and m2,
e.g., m1 = 4 and m2 = 5, an invariance in the modes and in
the bifurcation lines is also a possible scenario.

The routes from mode m1 to mode m2 occur through pitch-
fork and saddle-node bifurcations. A nonzero phase shift can
alter the type of bifurcation that occurs to take the system
from one mode to the other. We observe that, for ϕ = π ,
we have the predominance of pitchfork bifurcations while the
saddle-node is more common for ϕ = π/2.

Lastly, we identified different scenarios for the emergence
of secondary shearless curves inside the islands in the phase
space. The first scenario is the appearance of a shearless curve,
for ϕ = π , and a pair of curves, for ϕ = π/2, in a case where
there are no shearless curves for the null phase shift. For
ϕ = π , there is also the emergence of a single shearless curve,
represented by a maximum in the internal winding number
profile. It was observed that, when there is the emergence
of a pair of shearless curves for the null phase shift, there
is also the emergence of a pair for non-null phase shift. A
similar scenario is observed where there is a unique shearless
curve for the null phase shift: there is also the emergence of
shearless curves in the phase space for non-null phase shift,
but the emergence occurs as one at a time.

We have three parameters that continuously vary: K1, K2,
and ϕ. A complete description of the system is contained in
a three-dimensional parameter space, with also bifurcation
diagrams as a function of ϕ. In this paper, with the current
sections with three ϕ’s, we give a first idea of the rich phase
diagram.
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APPENDIX: FIXED-POINT ANALYSIS

For the map described in Eq. (3), we have a fixed point of
period 1 when y = 0 and

K1

2πm1
sin(2πm1xn) + K2

2πm2
sin(2πm2xn + ϕ) = P, (A1)

with P ∈ Z for all orbit on the unit torus. When one considers
0 � K1,2 � 4, it occurs that (K1/m1) + (K2/m2) < 2π for any
choice of m2 > m1 > 0. Thus, we set P = 0. The so-called
accelerator modes with |yn+1 − yn| � 1 are possible only for
(K1/m1) + (K2/m2) � 2π .

Analyzing the three values of the phase we studied, we
have the following. For ϕ = 0, a fixed point of period 1
satisfies the equation

K1

m1
sin(2πm1x∗) + K2

m2
sin(2πm2x∗) = 0. (A2)

Thus, (x∗, y∗) = (0, 0) and (x∗, y∗) = (0.5, 0) are a fixed
point for any pair (m1, m2), since m1,2 are integers.
The same fixed points are found for ϕ = π since the
equation

K1

m1
sin(2πm1x∗) − K2

m2
sin(2πm2x∗) = 0, (A3)

is valid for (x∗, y∗) = (0, 0) and (x∗, y∗) = (0.5, 0) for any
pair (m1, m2).

The case ϕ = π

2
is distinct, as we cannot generically find

the fixed points, for arbitrary values of m1,2. A fixed point for
ϕ = π/2 satisfies the equation

K1

m1
sin(2πm1x∗) + K2

m2
cos(2πm2x∗) = 0. (A4)

Therefore, we need to analyze the equation for each pair
(m1, m2). We determine the fixed points for the pairs
(m1, m2) = (2, 3), (m1, m2) = (2, 5) and (m1, m2) = (4, 5).
For these three pairs, the fixed points are (x∗, y∗) = (1/4, 0)
and (x∗, y∗) = (3/4, 0).

TABLE II. General bifurcation lines for the two-harmonic stan-
dard map with phase ϕ. We identified two general bifurcation lines,
indicated in the first column. In the second column, we present the
fixed points, which undergo the respective bifurcation. The phase is
written in the third column while the conditions on m1 and m2 for the
bifurcation to happen are indicated in the fourth column.

Line Fixed point ϕ m1,2 values

K2 = 4 − K1 (0, 0) ϕ = 0 Any value of m1 and m2

(1/2, 0) Even m1 and m2

(1/2, 0) ϕ = π Even m1 and odd m2

(3/4, 0) ϕ = π/2 m1 = 4, m2 = 5

K1 = K2 (1/2, 0) ϕ = 0 m1 and m2 with different parities

(0, 0) ϕ = π Any value of m1 and m2

(1/2, 0) m1 and m2 with same parities

(1/4, 0) ϕ = π/2 m1 = 2, m2 = 3

(3/4, 0)

(1/4, 0) m1 = 2, m2 = 5

(3/4, 0)

(1/4, 0) m1 = 4, m2 = 5

The eigenvalues for a fixed point of period 1 are

λ = −(K1 cos(2πm1x∗) + K2 cos(2πm2x∗ + ϕ) − 2)

2

±
√

[(K1 cos(2πm1x∗) + K2 cos(2πm2x∗+ϕ)−2)]2 − 4

2
.

(A5)

The value of λ and, consequently, the type of fixed point
(elliptic or hyperbolic) depend on the parameters of the system
K1, K2, m1, and m2. The bifurcation occurs when the term
under the square root is equal to zero, i.e., when the fixed point
changes its stability: the real eigenvalues become complex or
vice versa.

Using the fixed-point values in (A5), we obtain the bifur-
cation lines shown in Table II.
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